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Abstract 

The conventional tangent formula can be derived 
from the fact that Z ( ~ ) ,  i.e. the integral Iv p3dV 
expressed as a function of the collectivity • of phases 
of the largest E's,  is a positive maximum for the 
correct ~. In practice, however, refinement of phases 
with the tangent formula can also lead, for certain 
space groups and atomic arrangements, to false 
maxima of Z(q~). To reduce the number of such false 
maxima, Z(qb) is multiplied by the penalty function 
P ( ~ ) = [ I + A ( 1 - X 2 ( ~ ) / n ) ] ,  with A and n being, 
respectively, a suitable weighting factor and the num- 
ber of terms in the sum of a A ,2 statistic that takes 
into account the conditional probability distributions 
of all the triplets involving two largest E 's  plus a 
largest, a medium-large or a weakest one. It will be 
shown how the combined function Z(q~) × P(q~) can 
be maximized by a tangent formula. The application 
of this new restrained tangent formula will be illus- 
trated on the basis of a representative example. 

I. Introduction 

According to Cochran (1952) the integral ~vp3dV 
must be a large magnitude. This integral may be 
approximated in reciprocal space by means of the 
expression 

Z ( ~ ) = 2 Z Z  E-hEh'Eh-h'COS(~-h+~h'+~Oh-h') (1) 
h h' 

where the ~h denote the phases of the largest normal- 
ized structure factors Eh, hereafter collectively called 
• , and where the phase sums in the cosine terms are 
triple-phase structure invariants, i.e. their values are 

determined by the structure alone and are indepen- 
dent of the choice of the origin of the unit cell. The 
conventional tangent formula (Karle & Hauptman, 
1956), 

~Ph = phase of {~  Eh'Eh-h'}, 

results from the fact that the function Z(qb) must be 
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a maximum for the correct q~, i.e. from making 

OZ(~)/a~h = 2Eh~ Eh'Eh-h' sin (--q~h + ~h'+ q~h-h') 
h' 

=o (2) 

for each ~'h ~ ~ (Debaerdemaeker,  Tate & Woolfson, 
1985). The tangent formula allows the value of a given 
phase to be refined when the values of the remaining 
phases are known. This process can be sequentially 
performed for each ~0h, thus leading to the improve- 
ment of the whole set of phases • involved in the 
refinement. Unfortunately, refinement of phases with 
the tangent formula can also lead to false maxima of 
Z(qb) for certain space groups and atomic arrange- 
ments especially when the initial phases are assigned 
random values. 

2. The X 2 restraint 

To reduce the number of false maxima of Z ( ~ ) ,  a 
modified tangent formula (X 2 tangent formula) is 
proposed for space group P1 that maximizes Z(qb) 
under the restraint that the reduced X 2 statistic 
(Cram6r, 1946) 

x2(~) = 2 ( d . - G . ) 2 / ~ r ~  (3) 
H ~ K  

is low enough (<-nr).  K denotes the set of lattice 
points in one asymmetric unit of the reciprocal space 
for which there are useful observations, n~< is the 
number of terms in the sum and 

with 

 H=I EhE" hl h 
= ~  Eh-El-l_h,, COS (t~_H -t- ~h,,-t- ~H_h- ) (4) 

h" 

 .=phase 
The expected value of GH can be found from 

d .  = E Eh,,E._h.(COS (4,_. + ~h,,+ ~.-h"))- 
h" 

Evidently, in order to derive (~H, the expectation 
values of the cosine terms should be known. For the 
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special case of H corresponding to the largest, a 
medium-large or the weakest E, these values can be 
obtained from the approximation 

(cos ( 6 - ,  + ~... + ~,-, . .))  = ~.,.,, 
where ~:n,h" is the conditional expectation value of the 
cosine of the triple-phase invariant estimated from 
the known structure-factor magnitudes E H ,  Eh,, , ElI-h- 
and the atomic content of the unit cell (Germain, 
Main & Woolfson, 1970). This approximation 
assumes that ~bn~ (~PH for the largest and medium- 
large E's  and ~H,h,,~"~-'(COS ((~_H-~ ~t)h,,-J¢- ~n_h,,))""0 for 
the weakest ones. Finally, the variance 0.2 related to 

2 GH can be found from the conditional variances an,h" 
of the individual cosine terms (Hauptman, 1972) by 
applying the central limit theorem, so that 

° 2  : E ( Eh"En-h")2a~,h ". 
h" 

3. The X 2 tangent formula 

The derivation of the X 2 tangent formula requires the 
prior definition of the penalty function P ( ~ )  based 
on X2(O) 

P ( ~ )  = 1 + h[1 __¥2( (~)/FIK] 

with 3. a suitable weighting factor. The function P (O)  
is close to one for a correct ~. For incorrect solutions, 
however, P ( O )  tends to be smaller than one. Combi- 
nation of Z ( ~ )  with the penalty function P ( O )  leads 
to the more reliable function 

Q ( O ) = Z ( O ) x P ( O )  (5) 

that can be maximal if and only if Z ( ~ )  and P ( ~ )  
are both maximal. Notice that, for a correct ~, 
Q ( ~ )  = Z(O) .  Function Q ( ~ )  can be maximized by 
setting 

OQ/O~h=O V~hE 

and, therefore, 

aZ( ~ ) /&Ph-  k aX2( ~)/&ph = 0 (6) 

with 

k = h Z ( ~ ) n ~ l P ( ~ )  -I 

Obviously, the utility of (6) depends on the possibility 
of expressing 0X2(O)/&ph as an explicit function of 
~Ph. In view of (3) and (4), and after some algebraic 
manipulation (see also Rius & Miravitlles, 1992), one 
obtains 

ax'( @)lay,  = 4Eh Y. [( (~H'-- GH,)/0.~'] Eh-H' 
H'  

x sin (~ph -- ~H'-- ~Ph-H') (7) 

where the H' summation also includes the Friedel 
pairs. Substitution of (2) and (7) in (6) leads finally 

to the desired X 2 tangent formula, 

ch = phase of { ~ Eh,Eh_ h, 

+ 2k E [((~H'-- GH')/O'2,]Eh-H, exp i~bn,1. 
H '  J 

For a correct ~, P ( O ) =  1 holds and k reduces to 
AZ(~)/nK.  It has been found that the use of the 
reduced k does not greatly affect the effectiveness of 
the A ,2 tangent formula in refining random phases. 
The principal advantage of using the reduced k is 
that any possible scaling error in the variances 0 .2 
can be compensated for by slightly changing the value 
of h. 

Logically, the X 2 sum need not involve all the 
measured EH. For the particular case of H' only 
including those reflections with weakest E magni- 
tudes, an expression that essentially coincides with 
the reduced form of the Sayre-equation tangent for- 
mula results (Debaerdemaeker,  Tate & Woolfson, 
1988). Since the effectiveness of using the weakest 
E 's  as a source of additional information for solving 
the structures of even small proteins has been pre- 
viously discussed (Woolfson & Yao, 1990), this par- 
ticular case will not be handled here. Instead, the 
capability of the g 2 tangent formula to refine initially 
random phases when only some medium-large E's  
are considered in the X 2 sum will be emphasized. This 
is the first time that this type of information has been 
actively used in a tangent formula refinement. 

4. Test example 

The selected example is a known derivative of the 
punctatin A antibiotic produced by the dung fungus 
Poronia punctata (molecular formula: C15H2403, tri- 
clinic, space group P1, Z = 3, cell volume = 1106 A3) 
(Poyser, Edwards, Anderson, Hursthouse, Walker, 
Sheldrick & Walley, 1986). To prove the difficulty of 
using the unweighted conventional tangent formula 
to solve this structure (i.e. without introducing the A ,2 
restraint), 400 sets of 190 initially random phases of 
the largest E 's  (> 1.70) have been refined.* According 
to the figures of merit, no correct solution is present. 
Most of the calculated Fourier maps show a dominant  
peak. Fig. l ( a )  describes the evolution of the normal- 
ized Z ( O )  function as the refinement progresses. It 
can be seen how the final value of Z ( O )  is much 
greater than expected [ Z ( t ~ ) / Z e x p  = 1.33]. In other 
words, instead of reaching the correct local maximum 
of Z (O) ,  the global maximum of Z ( ~ )  is found. This 

*A section containing the complete mathematical derivations 
as well as the computer outputs of the test example has been 
deposited with the British Library Lending Division as Supplemen- 
tary Publication No. SUP54561 (32 pp.). Copies may be obtained 
through The Technical Editor, International Union of Crystallogra- 
phy, 5 Abbey Square, Chester CH1 2HU, England. 
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Fig. 1. Evolution of the normalized Cochran integral Z(~)/Zex p 
and of the X2/200 goodness of fit during the refinement of the 
190 initially random phases of the largest normalized structure 
factors using (a) the conventional tangent formula and (b) the 
X 2 tangent formula. To facilitate the comparison between the 
refinements, the same starting phase values have been used. 
While the conventional tangent formula maximizes Z(~) to its 
global maximum (a), the addition of the X 2 restraint succeeds 
in keeping Z(~) at the correct local maximum (b). 

is also reflected in the high X 2 values computed  at 
the end of  each iteration. 

To avoid this behaviour ,  200 med ium- la rge  E ' s  in 
the range 1.70 to 1.41 have been considered in the X 2 
sum. This represents the addi t ion of  3271 new triplets 
to the 3706 involving only the largest E 's .  40 sets of  

2 initially r a n d o m  phases were refined using the X 
tangent  formula  with ;t = 0.095, recalculating ~bH and 
GH every 38 refined phases.  From the 40 sets, two 
showed the images of  the three symmetry- indepen-  
dent  molecules.  The evolution of  Z ( ~ )  and X 2 for 
one of  these two sets is represented in Fig. l (b ) .  
Compar i son  with Fig. l ( a )  shows that Z ( ~ ) / Z e x p  is 
here closer to 1 and that  X2/200 gradual ly  decreases 
from 4.86 at the first i teration to 0.68 at the end of  
the refinement.  This clearly indicates that  the addi t ion 
of  the X 2 restraint hinders Z ( ~ )  from reaching the 
global maximum.  

Al though derived in space group P1,  the X 2 tangent  
formula  is completely general  and can be appl ied to 
all space groups with only minor  modifications.  

This work has been suppor ted  by the D G I C Y T  
(Project PB89-0036). 
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Abstract 

A probabil ist ic  formula  [Giacovazzo (1991). Acta  
Cryst. A47,256-263]  estimates triplet invariant  phases 
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given prior  informat ion on a non-Harke r  Pat terson 
peak u. The formula  requires prior informat ion both 
on the coordinates  of  the peak  and on the scattering 
factors of  the atoms with mutual  distance u. Since 
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