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Increasing the Power of Classical Direct Methods of Solving Crystal Structures.
The x* Tangent Formula*
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Abstract

The conventional tangent formula can be derived
from the fact that Z(®), ie. the integral |, p>dV
expressed as a function of the collectivity @ of phases
of the largest E’s, is a positive maximum for the
correct @. In practice, however, refinement of phases
with the tangent formula can also lead, for certain
space groups and atomic arrangements, to false
maxima of Z(@®). To reduce the number of such false
maxima, Z(®) is multiplied by the penalty function
P(®)=[1+A(1-x*(®)/n)], with A and n being,
respectively, a suitable weighting factor and the num-
ber of terms in the sum of a x° statistic that takes
into account the conditional probability distributions
of all the triplets involving two largest E’s plus a
largest, a medium-large or a weakest one. It will be
shown how the combined function Z(®) x P(®) can
be maximized by a tangent formula. The application
of this new restrained tangent formula will be illus-
trated on the basis of a representative example.

1. Introduction

According to Cochran (1952) the integral |, p°dV
must be a large magnitude. This integral may be
approximated in reciprocal space by means of the
expression

Z(P)=2}3Y E_wEyEy_pcos (@_pt ont @pp) (1)
Y

where the ¢, denote the phases of the largest normal-
ized structure factors E,, hereafter collectively called
@, and where the phase sums in the cosine terms are
triple-phase structure invariants, ie. their values are
determined by the structure alone and are indepen-
dent of the choice of the origin of the unit cell. The
conventional tangent formula (Karle & Hauptman,
1956),

¢n = phase of {Z Eh’Eh—h’}:
&
results from the fact that the function Z(®) must be
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a maximum for the correct @, i.e. from making
3Z(D)/d¢on=2En Y. EyEp_p sin (—op+ @p+ @pon)
o

=0 (2)

for each ¢, € @ (Debaerdemaeker, Tate & Woolfson,
1985). The tangent formula allows the value of a given
phase to be refined when the values of the remaining
phases are known. This process can be sequentially
performed for each ¢y, thus leading to the improve-
ment of the whole set of phases @ involved in the
refinement. Unfortunately, refinement of phases with
the tangent formula can also lead to false maxima of
Z(®P) for certain space groups and atomic arrange-
ments especially when the initial phases are assigned
random values.

2. The x? restraint

To reduce the number of false maxima of Z(®), a
modified tangent formula (x’ tangent formula) is
proposed for space group P1 that maximizes Z(®)
under the restraint that the reduced yx? statistic
(Cramér, 1946)

Xz(‘p) = ¥ (Gu- GH)Z/"{{

He K

(3)

is low enough (=ng). K denotes the set of lattice
points in one asymmetric unit of the reciprocal space
for which there are useful observations, ny is the
number of terms in the sum and

GH=

g EvEn_n

=) EvEy-wcos (¢_ytoptouy) (4)
&

with

¢y =phase of {Z E.,»EH_,,"}.
&

The expected value of Gy can be found from
GH =Y EnEy_n{cos (¢_u+ ont @r_n)).
o
Evidently, in order to derive GH, the expectation
values of the cosine terms should be known. For the

© 1992 International Union of Crystallography



JORDI RIUS AND CARLES MIRAVITLLES 29

special case of H corresponding to the largest, a
medium-large or the weakest E, these values can be
obtained from the approximation

(cos (b-nut @pt Pu-p)) = 3T

where &y 4 is the conditional expectation value of the
cosine of the triple-phase invariant estimated from
the known structure-factor magnitudes Ey, E,-, Ey_n
and the atomic content of the unit cell (Germain,
Main & Woolfson, 1970). This approximation
assumes that ¢y = ¢y for the largest and medium-
large E’s and &y p-={cos (¢_u+ ¢n+ ¢y_n)) =0 for
the weakest ones. Finally, the variance oj; related to
Gy can be found from the conditional variances ajy -
of the individual cosine terms (Hauptman, 1972) by
applying the central limit theorem, so that

0'%1 = Z (Eh"EH—h")Zail,h"-
o]

3. The x* tangent formula

The derivation of the x? tangent formula requires the
prior definition of the penalty function P(®) based
on x*(®)

P(®)=1+A[1-x*(D)/nk]
with A a suitable weighting factor. The function P(®)
is close to one for a correct @. For incorrect solutions,
however, P(®) tends to be smaller than one. Combi-

nation of Z(®) with the penalty function P(®) leads
to the more reliable function

Q(P)=Z(P)x P(P) (5)

that can be maximal if and only if Z(®) and P(®P)
are both maximal. Notice that, for a correct &,
Q(®)=Z(®). Function Q(P) can be maximized by
setting

0Q/3pn=0 Ve,e®
and, therefore,

IZ(P)/dpn—k 3x*(P)/o¢y=0 (6)

with

k=AZ(D)n ' P(P)™".
Obviously, the utility of (6) depends on the possibility
of expressing dx*(®)/d¢y as an explicit function of
¢n. In view of (3) and (4), and after some algebraic

manipulation (see also Rius & Miravitlles, 1992), one
obtains

0x*(®)/9¢n=4E, L [(Grw = Gu)/ 73] Ene

Xsin (¢n— G — Ph-mr) (7)

where the H' summation also includes the Friedel
pairs. Substitution of (2) and (7) in (6) leads finally

to the desired x° tangent formula,

Ph= phase Of {z Eh'Eh—h'
™

+2k E [( GH’ - GH’)/o-il‘]Eh-H‘ €Xp i¢H'}~

For a correct @, P(®)=1 holds and k reduces to
AZ(D)/nk. It has been found that the use of the
reduced k does not greatly affect the effectiveness of
the x° tangent formula in refining random phases.
The principal advantage of using the reduced k is
that any possible scaling error in the variances o
can be compensated for by slightly changing the value
of A.

Logically, the x* sum need not involve all the
measured Ey. For the particular case of H' only
including those reflections with weakest E magni-
tudes, an expression that essentially coincides with
the reduced form of the Sayre-equation tangent for-
mula results (Debaerdemaeker, Tate & Woolfson,
1988). Since the effectiveness of using the weakest
E’s as a source of additional information for solving
the structures of even small proteins has been pre-
viously discussed (Woolfson & Yao, 1990), this par-
ticular case will not be handled here. Instead, the
capability of the y* tangent formula to refine initially
random phases when only some medium-large E’s
are considered in the x* sum will be emphasized. This
is the first time that this type of information has been
actively used in a tangent formula refinement.

4. Test example

The selected example is a known derivative of the
punctatin A antibiotic produced by the dung fungus
Poronia punctata (molecular formula: C,sH,,0;, tri-
clinic, space group P1, Z =3, cell volume = 1106 A?)
(Poyser, Edwards, Anderson, Hursthouse, Walker,
Sheldrick & Walley, 1986). To prove the difficulty of
using the unweighted conventional tangent formula
to solve this structure (i.e. without introducing the x>
restraint), 400 sets of 190 initially random phases of
the largest E’s (>1.70) have been refined.* According
to the figures of merit, no correct solution is present.
Most of the calculated Fourier maps show a dominant
peak. Fig. 1(a) describes the evolution of the normal-
ized Z(®) function as the refinement progresses. It
can be seen how the final value of Z(®) is much
greater than expected [Z(®)/Z,,,=1.33]. In other
words, instead of reaching the correct local maximum
of Z(®), the global maximum of Z(®) is found. This

* A section containing the complete mathematical derivations
as well as the computer outputs of the test example has been
deposited with the British Library Lending Division as Supplemen-
tary Publication No. SUP54561 (32 pp.). Copies may be obtained
through The Technical Editor, International Union of Crystallogra-
phy, 5 Abbey Square, Chester CH1 2HU, England.
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Fig. 1. Evolution of the normalized Cochran integral Z(®)/Z,,,
and of the x2/200 goodness of fit during the refinement of the
190 initially random phases of the largest normalized structure
factors using (a) the conventional tangent formula and (b) the
x* tangent formula. To facilitate the comparison between the
refinements, the same starting phase values have been used.
While the conventional tangent formula maximizes Z(®) to its
global maximum (a), the addition of the x? restraint succeeds
in keeping Z(®) at the correct local maximum (b).
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is also reflected in the high x” values computed at
the end of each iteration.

To avoid this behaviour, 200 medium-large E’s in
the range 1.70 to 1.41 have been considered in the x°
sum. This represents the addition of 3271 new triplets
to the 3706 involving only the largest E’s. 40 sets of
initially random phases were refined using the x°
tangent formula with A = 0.095, recalculating ¢y and
Gy every 38 refined phases. From the 40 sets, two
showed the images of the three symmetry-indepen-
dent molecules. The evolution of Z(®) and x’° for
one of these two sets is represented in Fig. 1(b).
Comparison with Fig. 1(a) shows that Z(®)/ Z,,, is
here closer to 1 and that x?/200 gradually decreases
from 4.86 at the first iteration to 0.68 at the end of
the refinement. This clearly indicates that the addition
of the x’ restraint hinders Z(®) from reaching the
global maximum.

Although derived in space group P1, the x* tangent
formula is completely general and can be applied to
all space groups with only minor modifications.

This work has been supported by the DGICYT
(Project PB89-0036).
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Abstract

A probabilistic formula [Giacovazzo (1991). Acta
Cryst. A47,256-263] estimates triplet invariant phases
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given prior information on a non-Harker Patterson
peak u. The formula requires prior information both
on the coordinates of the peak and on the scattering
factors of the atoms with mutual distance u. Since
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